NEXT GENERATION PRODUCTS

Unique, simple, clean, economical, efficient and sustainable waste and biomass energy recovery with zero emissions

RAJESH KONGASSERY

7710005480

HOW IT WORKS?

Raw material stock	Raw material	Process heating	Separation	Purification	Pure synthetic gas
In the system, sorted and / or non-classified waste and / or biomass with moisture content of approx. 20- 30%, roughened in pieces approximately in size 25 mm ³ (5 mm x 5 mm x 5 mm).	In the first silos, oxygen is extracted from the raw material through a pump. The second silos eliminate all the residual oxygen by chemical means. The raw material in the chamber does not contain any oxygen.	The raw material passes slowly through chamber and, due to its extreme temperature, in a non- oxygenated environment, converts to synthetic gas. The chamber temperature is between 400° C and 900° C.	In synthetic gas, only organic material is transformed. Inorganic material (metal, glass, sand, etc.) is ejected in a clean and sterile form similar to sand.	Produced synthetic gas is purified, cooled and stabilized through simple chemical and mechanical processes.	This technology produces fuel, synthetic gas, carbon-based reactants, in raw materials, at high temperatures in a no- oxygen environment. Regardless of the fact that the chamber is injected with carbon, the end result is synthetic gas. Produced synthetic gas is very clean, free of tar, environmentally friendly and ready to use. This systems produce clean, ready-to-use gas, and there is no comparable technology. The produced gas is stored in containers and is carried out in special

SYNTHETIC GAS VERSUS NATURAL GAS ?!

STRUCTURE	SYNTHETIC GAS	NATURAL GAS
H_2	40 - 70 %	0 %
СО	10 - 45 %	0,5 – 1 %
CH ₄	2 - 15 %	80-88 %
CO ₂	1 – 2 %	0 %
C_2H_6	0 - 2 %	2 – 6 %
C ₃ H ₈	0 %	0,5 – 2 %
N ₂	0 - 5 %	2 – 14 %

WHAT CAN BE CONVERTED INTO SYNTHETIC GAS?

MUNICIPAL

WASTE

INDUSTRIAL WASTE

CONSTRUCTI-

ONAL WASTE

SPOILED FOOD

PURIFIER

SLUDGE

SLAUGHTER-HOUSES WASTE

OILY SAND & HEAVY OILS

WHAT CAN BE CONVERTED INTO SYNTHETIC GAS?

WHAT CAN BE CONVERTED INTO SYNTHETIC GAS?

INDUSTRIAL SLUDGE

COMPARISON TO OTHER TECHNOLOGIES

- Burning
 - Oxygen + Fire
 - Simple and very dirty
 - Destruction of carbon from raw materials
 - Ashes and poisonous remains
 - Smoke
 - Harmful by the environment
- Different Oxygen Conversion Processes
 - Pyrolysis, rotary-band devices, plasma, etc.
 - Complicated and dirty
 - Destroying carbon from raw materials
 - Ashes and poisonous remains
 - Smoke
 - Collected gas collection
 - Minimal energy gains
 - Very expensive
 - Inefficient

COMPARED TO OTHER TECHNOLOGIES

- Hydrolysis on extremely high temperatures
 - High, oxygen-free, temperature
 - Simple, clean, smart
 - Complete conversion of carbon
 - No toxic residues
 - No smoke and burning
 - Simply collecting gas
 - Great energy gain
 - Favorably
 - Efficiently
 - Ecological

SIZING OF SYSTEMS

Capacity	25 mt daily
Lenght / Width / Height	25 m / 4.5 m / 10 m
The amount of synthetic gas	7.2 – 24 Mil Nm³ daily
Amount of electricity produced	8 - 25 MW daily

LIFE SIZE PHOTOGRAPH OF PLANT

